FAULT TOLERANT CONTROL BASED ON SET-THEORETIC METHODS

Assumptions

Assumptions necessary for an exact fault tolerant
control (FTC) scheme:

e controllability and observability

e abrupt faults (e.g., in sensor output)

e redundancy of the scheme (e.g., failure of
one sensor does not make the scheme un-
observable)

e persistence of excitation (e.g., through an off-
set in reference signals)

e boundedness of noises and perturbations

Various faults scenarios can be accommodated:

e total output outages

FAULT
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y RECOVERY

vy, = Cix +1n; 4

yi=0-z+1n;

yi=0-z+1n;

e generic fault scenarios (a signature matrix for
each type of fault)

yi = IL; |Cix + | + [1 — T14] ni

Advantages

This scheme offers [5]:

e exact FDI, stability and invariance guarantees
12, 6] and performance comparable with clas-
sical sensor fusion schemes

e reduced computational demands (the sets are
computed offline and only set membership
testings are executed online)

e a compromise between complexity of repre-
sentation and numerical accuracy

e extensions to various cases of dynamics
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Theoretical tools

Following results in [1, 2], set strategies are used
to describe regions which characterize healthy and
faulty functioning for the sub-systems of interest.

Set-theoretic tools:

e invariance notions (ultimate bounds, RPI and
mRPT sets, recheability, etc) for set characteri-
zation [2]

e inclusion time computation for convergence
and set inclusions

e various families of sets (polytopes, zono-
topes, star-shaped regions) which allow exten-
sions to non-convex perturbations and nonlin-
ear/LPV systems

e mixed integer programming and hyperplane
arrangements for descriptions of non-convex
regions and subsequent optimizations [3]

e dwell-time and cyclic invariance for switched
systems [4]

FTC scheme

Scheme classifications:
e LTI/switched/with delay or
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FDI mechanism

An exact FDI mechanism which transitions be-

tween healthy, faulty and under recovery functioning
modes via set membership testings [7]:
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r ¢ R

e residual inclusion into healthy/faulty sets

(r; € R'/R!) with exactness guaranteed for
R'NR; =10

e necessary and sufficient conditions for recov-
ery (Sﬁ N S; # 0 and S;JR C Sz)
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Residual design:

e output measurement r; = y; — CiTrey

e cstimation: r; = x;

e moving finite horizon: r; = f(u,u ,...,¥i, ¥y, ,...
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Residual design and separation conditions provide feasible regions for references and/or control variables:

ri = Ciz+n;
'r'z'F — _Cixref + 775?

which leads to the feasible region:
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Control strategies:
e active FTC with fix gain feedback 0l szm L
— controlled invariance through fix gain design [6] 5 \ \ jﬁ/ \
— reference governor synthesis for exact FDI [8] © /;77”/ 27
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