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Assumptions

Assumptions necessary for an exact fault tolerant
control (FTC) scheme:

• controllability and observability

• abrupt faults (e.g., in sensor output)

• redundancy of the scheme (e.g., failure of
one sensor does not make the scheme un-
observable)

• persistence of excitation (e.g., through an off-
set in reference signals)

• boundedness of noises and perturbations

Various faults scenarios can be accommodated:

• total output outages

yi = Cix+ ηi
FAULT−−−−−→ yi = 0 · x+ ηFi

yi = Cix+ ηi
RECOVERY←−−−−− yi = 0 · x+ ηFi

• generic fault scenarios (a signature matrix for
each type of fault)

yi = Πi

[
Cix+ ηi

]
+
[
I −Πi

]
ηFi

Theoretical tools

Following results in [1, 2], set strategies are used
to describe regions which characterize healthy and
faulty functioning for the sub-systems of interest.

Set-theoretic tools:

• invariance notions (ultimate bounds, RPI and
mRPI sets, recheability, etc) for set characteri-
zation [2]

• inclusion time computation for convergence
and set inclusions

• various families of sets (polytopes, zono-
topes, star-shaped regions) which allow exten-
sions to non-convex perturbations and nonlin-
ear/LPV systems

• mixed integer programming and hyperplane
arrangements for descriptions of non-convex
regions and subsequent optimizations [3]

• dwell-time and cyclic invariance for switched
systems [4]

Advantages

This scheme offers [5]:

• exact FDI, stability and invariance guarantees
[2, 6] and performance comparable with clas-
sical sensor fusion schemes

• reduced computational demands (the sets are
computed offline and only set membership
testings are executed online)

• a compromise between complexity of repre-
sentation and numerical accuracy

• extensions to various cases of dynamics

FDI mechanism

An exact FDI mechanism which transitions be-
tween healthy, faulty and under recovery functioning
modes via set membership testings [7]:
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• necessary and sufficient conditions for recov-
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FTC scheme

Scheme classifications:

• LTI/switched/with delay or
nonlinear systems

• multi-sensor/actuator

• implicit/explicit FDI

• passive/active FTC
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Residual design:

• output measurement ri = yi − Cixref

• estimation: ri = x̂i

• moving finite horizon: ri = f(u, u−, . . . , yi, y
−
i , . . . )
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Residual design and separation conditions provide feasible regions for references and/or control variables:

rHi = Ciz + ηi

rFi = −Cixref + ηFi .
⇒ ({Ciz} ⊕Ni) ∩

(
{−Cixref} ⊕NF

i

)
= ∅

which leads to the feasible region:

Dref = {(z, xref ) : separation holds ∀i ∈ I} ⇒

{
Dxref = {xref : (Sz, xref ) ⊆ Dref}
Dxref = {z : (z,Xref ) ⊆ Dref}

Control strategies:

• active FTC with fix gain feedback

– controlled invariance through fix gain design [6]

– reference governor synthesis for exact FDI [8]

• active FTC with MPC

• passive FTC
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