Fault tolerant control design for a class of multi-sensor networked control systems


N. Stankovic, Stoican, F., Olaru, S., and Niculescu, S. I., “Fault tolerant control design for a class of multi-sensor networked control systems”, International Journal of Adaptive Control and Signal Processing, vol. 30, no. 2, p. 412-426, 2016.

Start Page:


Date Published:



Present article provides a set-based fault tolerant control strategy for multi-sensor systems, where sensors are communicating with a controller via a shared network. Possible faults, such as abrupt sensor outages and network-induced delays, are identified as degradation modes which might affect the information provided by each sensor. Measurements that are transmitted from a sensor to the controller are characterized by a residual signal which is sensitive to the sensor's abrupt faults and network-induced delays. In order to avoid control based on information which is provided by a faulty sensor, we designed a fault detection and isolation mechanism that is implemented through a set membership evaluation. This evaluation differentiates between ``healthy'', ``faulty'' and ``delayed'' data transmission. Unequivocal fault detection and isolation are assured if the corresponding sets are disjoint. Since in general this is not the case, sets separation is enforced by a reference governor. Fault detection and isolation mechanism is design in order to transmit only measurements from sensors which are fully operational, even if potentially affected by delays. If there is a delayed information that reaches the controller, then control action is reconfigured in order to govern the plant as close as possible to the reference signal. Such control action is provided by a model-based controller with compensation block. Sufficient condition that guarantees the existence of the compensation signal is presented as well.