Publications by Co-Author: Lefevre

T. Nguyen, Prodan, I., Stoican, F., and Lefevre, L., “Reliable nonlinear control for quadcopter trajectory tracking through differential flatness”, in IFAC World Congress Conference, 2017.Abstract
his paper addresses the trajectory tracking problem for a quadcopter system under nominal and fault-affected scenarios, the latter case considers stuck actuator(s)). Differential flatness is employed for trajectory generation and control design. The particularity resides in that a full parametrization of the states and inputs is given without any assumptions or simplifications on the quadcopter dynamics. Furthermore, using the properties of flatness and a combination between computed torque control and feedback linearization, a two layer control design is proposed. The tracking performances and stability gurantees are analyzed for nominal and faulty functioning under extensive simulations.